撰文| 吳坤諺
編輯| 吳先之
相比其他動輒瞄準萬億市場的同行,網(wǎng)易的風格決定了其在新業(yè)務拓展上基本遵循小敘事,強調(diào)高效率,帶有強烈實用主義與碎片化色彩。
務實仿佛成了網(wǎng)易創(chuàng)新業(yè)務的定語,任何微小的創(chuàng)新都將場景作為邁出的第一步——其許多新業(yè)務未能走出“小打小鬧”的范疇,隨大市場需求而流變,尤其是在需求系統(tǒng)性思維to B領域。另一方面,常規(guī)互聯(lián)網(wǎng)to B思路是既有業(yè)務與組織能力的經(jīng)驗遷移,游戲與物理世界間的場景割裂是天然的鴻溝。
Gen AI持續(xù)迭代,泛化的可能性讓AI有望成為廠商彌合場景的橋梁。好比玩家推動迭代的英偉達GPU,涉及劇情文字、圖形、動捕、建模等多個AI應用領域的游戲是AI的來路,也可以是AI的去向。
光子星球獲悉,網(wǎng)易伏羲實驗室(下稱伏羲)旗下工程智能化品牌網(wǎng)易靈動(下稱靈動)經(jīng)市場驗證,開始步入規(guī)模擴張階段。目前其主要運營方向是在國內(nèi)拓展市場渠道,同時嘗試方案出海。
![]()
大多數(shù)時候,小眾突圍都存在一定偶然色彩。但不可否認,于網(wǎng)易而言,靈動是游戲與AI技術向物理場景遷移的成功實踐。
更重要的是,AI與游戲緊密貼合的特性,昭示著網(wǎng)易乃至整個游戲行業(yè)有著更大的主線任務:在服務型內(nèi)容游戲當?shù)赖漠斚拢螒蛲獾臉I(yè)務實踐能否為游戲本身提供更多產(chǎn)能上的支持和升級,較游戲技術向外遷移更重要。
“副業(yè)”的自我突圍
游戲扛鼎的網(wǎng)易有“不務正業(yè)”的資格,但相比于其他企業(yè)的創(chuàng)新業(yè)務,網(wǎng)易的風格獨樹一幟。
正如創(chuàng)新前的那句定語,相同的管理理念下,網(wǎng)易創(chuàng)新業(yè)務的發(fā)展與游戲工作室相似。全權(quán)負責業(yè)務的負責人需要帶隊從0到1實現(xiàn)落地,而后才能進一步爭取資源與支持。
換句話說,網(wǎng)易孵化的創(chuàng)新項目自誕生之初,便背負著較強的落地期望。此外,部分市場前景較明晰的業(yè)務存在營收KPI指標,如網(wǎng)易數(shù)智旗下互聯(lián)網(wǎng)安防業(yè)務易盾在KPI完成度上較為出色。
至于從0到1的過程,創(chuàng)新業(yè)務亦與游戲業(yè)務無二:內(nèi)部驗證可行性后再由負責人主導對外輸出。簡單梳理靈動項目發(fā)展歷程,我們能看到自內(nèi)向外的清晰軌跡。
2021年下半年,機器人項目正式啟動;2022年,相關技術支持下的挖掘機投身網(wǎng)易杭州園區(qū)建設;2023年后開始外部實踐,通過與中建八局的戰(zhàn)略合作打開垂直市場的大門。
與其他創(chuàng)新業(yè)務相比,靈動的優(yōu)勢在于游戲3D建模、數(shù)字孿生與擬態(tài)技術,為內(nèi)部驗證提供了基礎。
據(jù)了解,靈動的前身是伏羲下屬的一個AI落地探索團隊,受GPT3啟發(fā),自2021年起開始錨定工程機械智能化為游戲外的重要AI落地場景。在那個機器學習與NLP占絕對主流的年代,國內(nèi)大廠大多將目光放在流水線的生產(chǎn)管理與提效上,工程機械反倒有種“燈下黑”的意味。
或是得益于此,靈動在這個極為小眾的新市場站住了腳跟,并于2023年成立網(wǎng)易靈動,以解決落地、客戶交付等商業(yè)化問題。負責人小新(化名)表示:“我們的客戶不在科技圈,而是在礦山、港口、攪拌站這些垂直基建場景。”
尤其是在立項之初,團隊對工程機械缺乏具體認知的時候,他們便通過仿真游戲的渲染引擎建模挖掘機、裝載機等,低成本進行碰撞、摩擦與物體識別等實驗以驗證算法。如今早已在網(wǎng)易多款游戲中應用的智能NPC,同樣可以直接遷移到工程場景,無非是將數(shù)據(jù)來源由玩家轉(zhuǎn)為操作機器作業(yè)的“老師傅”。
![]()
另一方面,在前述內(nèi)部機制下,領隊人之于項目亦起到至關重要的作用。
接近網(wǎng)易人士張涵(化名)告訴光子星球,小新有著創(chuàng)業(yè)背景和AOP(面向“智能體”編程)相關技術經(jīng)驗,且早年在網(wǎng)易負責內(nèi)部支撐與產(chǎn)研。前者造就了他對工程機械和AOP落地的“執(zhí)念”,后者則為團隊爭取了更多資源支持與空間。
我們了解到,靈動品牌今年的ARR(年度經(jīng)常性收入)在過去一年保持著高增速——除了來自雷火的技術支持,網(wǎng)易相關領導也很關注該項目。
如果不是起初便錨定了明確的場景,解決商業(yè)化的先驗難題,靈動的落地道路可能不會像如今一般順暢。
值得一提的是,2024年初恰逢游戲行業(yè)變故。張涵提到,這場變故對網(wǎng)易而言,受影響最大的并非游戲,而是基于游戲業(yè)務上的創(chuàng)新業(yè)務。這或進一步加劇了靈動團隊的商業(yè)化壓力。
基業(yè)優(yōu)先的特性導致網(wǎng)易可能會在探索新業(yè)務時難以“畢其功于一役”,卻不妨礙具備創(chuàng)新性的產(chǎn)品在小眾市場自我突圍。游戲業(yè)務上,網(wǎng)易曾推出一系列小眾品類精品,創(chuàng)新業(yè)務也跑出了有道、網(wǎng)易云音樂以及網(wǎng)易靈動等細分市場位置靠前的項目。
小眾賽道的紅與黑
很多時候,新技術是債務而非資產(chǎn),因為許多技術在誕生之初找不到足夠清晰、連貫的應用場景。而什么都有想要的結(jié)果則是核心研發(fā)能力被指數(shù)級地稀釋,最終追隨者取得勝利。
處于資本風口,廣義上的具身智能還在憑借通用性尋找諸如巡檢、監(jiān)測、救援等確定的落地場景。反映到商業(yè)化上,據(jù)人形機器人場景應用聯(lián)盟統(tǒng)計,上半年國內(nèi)公開的人形機器人訂單中,高校、科研院所、職校等“探索性”主體占比為75%。
“不要到大家都看好的路上擠,而要順勢而為,到安靜處去積蓄力量”。承繼相似管理哲學,一早便確定場景的靈動不太受此煩擾,商業(yè)化更多像是一個隨技術演進而循序漸進的過程。
小新表示,靈動積累了大量挖掘機、裝載機等工程機械一線作業(yè)的行業(yè)數(shù)據(jù)。這些行業(yè)生產(chǎn)商都未必掌握的數(shù)據(jù),經(jīng)清洗標注后便是智能化的行業(yè)Know How。我們了解到,靈動在招聘中特別提到員工需要自己趕赴作業(yè)現(xiàn)場驗收數(shù)據(jù)與實踐成果,并以此迭代產(chǎn)品和算法。
比較典型的落地案例是靈動前段時間發(fā)布的無人裝載機。據(jù)悉,在掌握挖掘機相關作業(yè)的物體識別、避障等數(shù)據(jù)后,靈動團隊僅花費三個月便在模擬環(huán)境下跑通單機智能化,即自A點鏟料,去B點卸料。但在實際投入一線中,仍面臨不少難點。
“跑通智能化之后,后續(xù)的任務就是單機效率的提升。這個過程中會遇到許多工程化問題,比如人員誤入、料斗大小的適應、障礙物的避讓與多機并行 調(diào)度”,小新表示。
基于此有兩個重要參考指標,一個是單機效率相比人類操作能提升多少,另一個是AI接管率,即有多少任務可以完全交由AI完成——兩相結(jié)合,即可得出規(guī)模生產(chǎn)場景下,無人方案較傳統(tǒng)作業(yè)的綜合能耗優(yōu)勢。
目前,靈動智能化方案下的無人裝載機的綜合能耗較傳統(tǒng)人工節(jié)省30%,其中部分來自于省去了夜間高峰作業(yè)的照明費用。從最早的礦山,到港口、攪拌站,跑通垂直場景技術路徑后,靈動需要做的不過是不同基建場景的橫向拓展。
“選好自己的場景,先不去解決通用性問題,盡可能垂直,最后和客戶做雙向篩選”,靈動的發(fā)展路徑,從某種程度上與多數(shù)偏向通用性能力的具身智能獨角獸形成了差異化。
具身智能的最大敵人是人類自己,而高度碎片化的市場特征,也讓專精垂直領域的打法更易積累早期優(yōu)勢,直到項目在小眾市場觸頂。
今年7月的WAIC,網(wǎng)易靈動發(fā)布全球首個為露天礦山挖掘機裝車場景打造的具身智能模型“靈掘”與訓練框架“機械智心”。為加速賽道發(fā)展,其還開源了模型數(shù)據(jù)集。
![]()
小新透露,靈動正在積極接觸工信部、工程機械協(xié)會,以推動行業(yè)標準化,吸引更多主體與合作伙伴參與。據(jù)了解,靈動商業(yè)化落地案例中,有50%的客戶會找網(wǎng)易靈動來購買全套的方案,包含工程機械本體和智能化套件服務。靈動再向徐工、長安重工等主機廠下單定制化生產(chǎn)無人化的設備。其余40%是在現(xiàn)有工程車輛的基礎上,靈動提供軟硬件一體的背包服務,安裝到工程機械上,使其可以直接實現(xiàn)自動化無人化的作業(yè)能力
大致算下來,靈動僅有10%的訂單是經(jīng)由合作伙伴封裝交付,自側(cè)面印證其拓展渠道合作的迫切,亦表明業(yè)務自早期驗證步入市場拓展階段。前文提到的開放數(shù)據(jù)集,以及靈動目前正在著手的出海,均是開拓市場空間的表現(xiàn)。
早些時候,以靈動為代表的網(wǎng)易創(chuàng)新業(yè)務更多只能充當集團營收的補充,盡可能回收內(nèi)部初期開發(fā)成本。隨著Gen AI持續(xù)演進,或通用或垂直的Agent加速泛化,創(chuàng)新業(yè)務有望在實踐中反哺游戲AI。
游戲才是星辰大海
黃仁勛來華,穿唐裝賣芯片;蔡浩宇赴美,開公司做游戲。多位行業(yè)大佬身體力行,足以證明游戲與AI從未分家。
自2023年起,AI游戲的初創(chuàng)公司與項目便層出不窮。只是多數(shù)項目在人才密集型的組織中淪為一閃而過的“流星”。
大語言模型的成本已經(jīng)被打下來,但生圖模型的成本仍高居不下,導致多數(shù)項目不得不為AI NPC與Agent披上像素游戲的外殼。這般類似90年代掌機的“復古”沙盒體驗,而今多出于小成本獨立游戲,畫面表現(xiàn)甚至不如小程序運行的小游戲。
另一方面,目前許多AI游戲項目以“共建線上社會”為驗證落地的核心目標,需求玩家與AI高頻交互。可不論是打字還是語音,于玩家而言都是不小的交互成本;開發(fā)者亦需要為交互背后的Tokens付費。
自由度與低成本之間的天平?jīng)]有誰能平衡。
參考蔡浩宇推出的Demo項目《Whispers from the Star》。其以線性推動劇情敘事的方式限制自由度,從而控制交互成本的做法倒向了另一個極端:推動玩家買賬的是AI,而非游戲性——邏輯上與Character.AI這般AI陪伴產(chǎn)品沒有本質(zhì)區(qū)別,只是游戲為玩家預設好了背景和場景。
為AI尋找游戲落地場景是創(chuàng)業(yè)者的樂土,成熟廠商無需“為賦新詞強說愁”。相反,多個已驗證的場景需要AI的參與。事實上,AI游戲沒有“Native”,AI本就應該是游戲的底層技術。
![]()
以《逆水寒》為例,AI的介入正在緩慢改變MMO的社交生態(tài)體系。其聯(lián)合快手推出的劇組玩法,支持玩家一鍵導入預先準備好的視頻片段或清晰圖片作為動作捕捉的基礎素材,生成動作和表情數(shù)據(jù),甚至生成游戲“短劇”。
公開數(shù)據(jù)顯示,《逆水寒》劇組模式UGC總數(shù)破千萬,已經(jīng)成為維護玩家留存與活躍的重要動力。
對于有技術而缺場景的網(wǎng)易而言,依靠模擬建模初步跑通的靈動邁出了游戲到其他垂直場景的第一步,過去限制網(wǎng)易創(chuàng)新業(yè)務的場景割裂問題已經(jīng)解決一半。
在此之后,靈動與伏羲實驗室的進一步挑戰(zhàn)是加速批量化與規(guī)模化。至于未來的發(fā)力方向,亦昭然若揭——AI產(chǎn)能于工業(yè)化管線中的占比。
微信號|TMTweb
公眾號|光子星球
別忘了掃碼關注我們!
特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺“網(wǎng)易號”用戶上傳并發(fā)布,本平臺僅提供信息存儲服務。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.