1
報(bào)告人:袁秉凱,中國(guó)科學(xué)院蘇州納米技術(shù)與納米仿生研究所
時(shí)間:9月2日(周二)10:00
單位:中國(guó)科學(xué)院物理研究所
地點(diǎn):懷柔園區(qū)MA樓505會(huì)議室
騰訊會(huì)議:223-632-892
會(huì)議密碼:2025
摘要:
金屬-絕緣體相變是凝聚態(tài)物理的基本概念。通常,金屬-絕緣體相變涉及多個(gè)自由度的相互競(jìng)爭(zhēng),比如電荷、晶格、無(wú)序等。我們利用有機(jī)分子插層和引入點(diǎn)空位的方法,在二維材料中觀察到激子凝聚和安德森局域化導(dǎo)致的金屬絕緣體相變的證據(jù)。我們合成了二茂鈷分子(Co(Cp)2)插層的SnSe2二維插層材料。在Co(Cp)2-SnSe2中,我們觀察到激子凝聚存在的證據(jù):1.在臨界溫度下,SnSe2表面出現(xiàn)了電荷密度波但沒(méi)有伴隨明顯的周期性結(jié)構(gòu)畸變;2.自發(fā)打開(kāi)的激子帶隙;3.電輸運(yùn)測(cè)量中的金屬-絕緣體相變。我們?cè)赯rTe3中引入Te空位,觀察到安德森局域化導(dǎo)致的金屬絕緣體轉(zhuǎn)變的證據(jù):1.輸運(yùn)測(cè)量中,本征的ZrTe3表現(xiàn)出金屬性質(zhì),ZrTe3-x隨溫度降低有金屬-絕緣體相變;2.角分辨光電子能譜測(cè)量發(fā)現(xiàn)ZrTe3-x的費(fèi)米面上有態(tài),沒(méi)有觀察到帶隙。3.STM和AFM研究發(fā)現(xiàn)單個(gè)Te空位的存在以及伴隨的線性的晶格畸變。單個(gè)Te空位導(dǎo)致其兩側(cè)約六個(gè)Te原子的線性畸變,放大了無(wú)序結(jié)構(gòu)的濃度并導(dǎo)致安德森局域化,從而在低濃度Te空位且不破壞晶格穩(wěn)定性的情況下引發(fā)了金屬-絕緣體相變。我們的研究表明有機(jī)分子插層和摻雜是調(diào)控?zé)o機(jī)二維材料晶體/能帶結(jié)構(gòu)、相轉(zhuǎn)變以及電子性質(zhì)的有效手段,宏觀-微觀以及多物理量聯(lián)用的表征手段為進(jìn)一步探究二維材料的豐富物性提供了重要的實(shí)驗(yàn)支撐。
報(bào)告人簡(jiǎn)介:
袁秉凱,中國(guó)科學(xué)院蘇州納米技術(shù)與納米仿生研究所副研究員。2008年本科畢業(yè)于蘭州大學(xué),2014年博士畢業(yè)于國(guó)家納米科學(xué)中心,師從裘曉輝和王琛研究員。之后在中國(guó)工程物理研究院,加拿大英屬哥倫比亞大學(xué)大學(xué),上海交通大學(xué)和中國(guó)科學(xué)技術(shù)大學(xué)從事博士后工作。目前研究方向包括:共存于親水和疏水金屬表面的水團(tuán)簇的探索;非金屬表面的化學(xué)反應(yīng)和石墨烯納米帶的合成;二維材料新奇物理性質(zhì)的探索。發(fā)表SCI論文十余篇,包括Nat. Comm,.JACS,Nat. Phys.等。
2
報(bào)告人:羅永康,華中科技大學(xué)
時(shí)間:9月2日(周二)12:00
單位:江蘇省物理學(xué)會(huì)
鏈接:
摘要:
UTe2是近年來(lái)新發(fā)現(xiàn)的重費(fèi)米子超導(dǎo)體,其在壓力和強(qiáng)磁場(chǎng)調(diào)控下展示十分豐富的超導(dǎo)相圖,吸引了科學(xué)家的密切關(guān)注。早期的NMR、STM等實(shí)驗(yàn)表明它可能是一個(gè)時(shí)間反演對(duì)稱性破缺、具有自旋三重態(tài)配對(duì)的手性拓?fù)涑瑢?dǎo)體候選材料;然而近期針對(duì)更高質(zhì)量的單晶樣品的研究表明其超導(dǎo)序參量不具有多重簡(jiǎn)并的分量,這與早期的研究結(jié)論大相徑庭。為了澄清UTe2的超導(dǎo)序參量及其配對(duì)機(jī)制,有必要在高質(zhì)量的單晶樣品中開(kāi)展更多的對(duì)稱性敏感的實(shí)驗(yàn)研究。在本報(bào)告中,本人將匯報(bào)課題組及合作團(tuán)隊(duì)近期利用壓力調(diào)控下的點(diǎn)接觸譜的研究進(jìn)展。我們的研究表明隨著壓力的調(diào)控,體系在0.3 GPa前后點(diǎn)接觸譜發(fā)生明顯的改變,這種改變可能伴隨著超導(dǎo)序參量的突變。本研究有望為揭示UTe2的超導(dǎo)對(duì)稱性及豐富的超導(dǎo)相圖機(jī)制提供新的視角。
報(bào)告人簡(jiǎn)介:
羅永康,教授,國(guó)家高層次人才計(jì)劃青年項(xiàng)目入選者。2008年和2013年先后獲得浙江大學(xué)物理系學(xué)士和博士。2013年至2017年在美國(guó)洛斯阿拉莫斯國(guó)家實(shí)驗(yàn)室(LANL)從事博士后研究;2017年開(kāi)始在美國(guó)加州大學(xué)洛杉磯分校(UCLA)物理和天文系做博士后。2018年9月起聘為在華中科技大學(xué)國(guó)家脈沖強(qiáng)磁場(chǎng)科學(xué)中心教授,從事脈沖強(qiáng)磁場(chǎng)下的核磁共振和共振超聲譜等先進(jìn)實(shí)驗(yàn)技術(shù)的研發(fā)。主要的研究方向是凝聚態(tài)物理強(qiáng)關(guān)聯(lián)電子系統(tǒng),包括非常規(guī)超導(dǎo)、重費(fèi)米子、量子臨界點(diǎn)、關(guān)聯(lián)拓?fù)湮飸B(tài)等。發(fā)表SCI論文100余篇。
3
報(bào)告人:Zhang Shengbai, Rensselaer Polytechnic Institute, Troy, NY
時(shí)間:9月2日(周二)14:00
單位:中國(guó)科學(xué)院物理研究所
地點(diǎn):M樓830會(huì)議室
摘要:
Symmetry dictates the physical properties of materials. The symmetry of the Bravais lattice defines the set of points, lines, and planes over which sets of planewaves are degenerate, upon which atomic symmetry determines the interaction potentials which may lift such degeneracies. This results in wavefunctions which are single planewaves throughout the BZ, except in the vicinity of the removed degeneracies. As optical transitions between any two planewaves are forbidden, only regions of the Brillouin zone (BZ) near these lifted degeneracies contribute to optical properties. Application to optical response of Si and other semiconductors reveals that a single band transition, with only two planewaves, well describes their dielectric properties. Further, it provides a framework to understand non-linear optical response which is demonstrated to arise from higher order degeneracy existing along high symmetry lines/points of the BZ.
4
報(bào)告人:Zhang Shengbai, Rensselaer Polytechnic Institute, Troy, NY
時(shí)間:9月2日(周二)14:00
單位:中國(guó)科學(xué)院物理研究所
地點(diǎn):M樓830會(huì)議室
摘要:
Study of band alignment is plagued by the lack of a common reference for periodic systems. Typically, average potential is used as the reference. One may truncate a bulk to expose the vacuum level. However, with respect to such a level, the average potential is strongly orientation dependent. This happens because the average potential is a projection of a nonintuitive bulk quadrupole tensor in the given direction. By introducing Wigner-Seitz atoms (WSA), which are charge neutral, maintain local crystal symmetry, and tessellate space, one can however reduce the tensor to the expected scalar quantity, whereby setting the stage for a universal intrinsic band alignment. The WSA approach further allows for an evaluation from classical electrostatics of the charge transfer at the interface, which manifests itself as the formation of (sometimes sizable) interfacial bond dipoles. In general, therefore, band alignment consists of two parts: (1) intrinsic contribution of bulk and (2) extrinsic contribution due to interfacial bond polarization. We discover that for interface between isotropic systems, the potential shift due to interface charge transfer is only a function of bulk crystal structure and strictly interface orientation independent in line with experiments.
5
報(bào)告人:胡廣月,中國(guó)科學(xué)技術(shù)大學(xué)
時(shí)間:9月2日(周二)20:00
單位:中國(guó)科學(xué)院理論物理研究所
騰訊會(huì)議:109-363-204
密碼:654321
![]()
6
報(bào)告人:宋文玉,清華大學(xué)
時(shí)間:9月4日(周四)10:00
單位:中國(guó)科學(xué)院物理研究所
騰訊會(huì)議:613-221-008
會(huì)議密碼:0904
摘要:
拓?fù)淞孔佑?jì)算的核心是通過(guò)操控馬約拉納零能模實(shí)現(xiàn)具有天然容錯(cuò)性的量子計(jì)算。半導(dǎo)體-超導(dǎo)體異質(zhì)結(jié)納米線是實(shí)現(xiàn)馬約拉納零能模的重要平臺(tái)之一。基于傳統(tǒng)III-V族材料體系的馬約拉納零能模研究長(zhǎng)期受困于樣品的高無(wú)序問(wèn)題。我們以選區(qū)分子束外延生長(zhǎng)的PbTe-Pb異質(zhì)結(jié)納米線這一新馬約拉納零能模候選體系為研究對(duì)象,對(duì)材料生長(zhǎng)與襯底制備工藝進(jìn)行了創(chuàng)新,所獲得的PbTe納米線在零磁場(chǎng)下顯示彈道輸運(yùn)的長(zhǎng)度達(dá)到1.7 μm,并在PbTe-Pb隧道結(jié)器件中觀察到了穩(wěn)定存在且高度達(dá)2e2/h附近的零偏壓電導(dǎo)峰,為基于半導(dǎo)體-超導(dǎo)體納米線的拓?fù)淞孔佑?jì)算實(shí)現(xiàn)奠定了材料基礎(chǔ)。
報(bào)告人簡(jiǎn)介:
宋文玉博士,2019年畢業(yè)于山東大學(xué),獲理學(xué)學(xué)士學(xué)位。2025年畢業(yè)于清華大學(xué),獲理學(xué)博士學(xué)位,導(dǎo)師為何珂教授。現(xiàn)為清華大學(xué)物理系博士后,合作導(dǎo)師為薛其坤院士。近五年來(lái)以第一作者身份發(fā)表論文11篇。申請(qǐng)中國(guó)發(fā)明專利3項(xiàng)。入選2025年度博士后創(chuàng)新人才支持計(jì)劃,清華大學(xué)水木學(xué)者項(xiàng)目。
7
報(bào)告人:蘭崢崗,華南師范大學(xué)
時(shí)間:9月4日(周四)10:30
單位:中國(guó)科學(xué)院物理研究所
地點(diǎn):懷柔園區(qū)X1樓101會(huì)議室
騰訊會(huì)議:733-320-717
會(huì)議密碼:250904
摘要:
Nonadiabatic dynamics widely exist in photophysics, photochemistry and photobiology. We tried to develop theoretical approaches to study the photoinduced nonadiabatic dynamics. A few topics will be discussed. We combined the doorway-window representation of the nonlinear response theories and ab initio nonadiabatic dynamics to simulate the time-resolved pump-probe spectra, including both transient absorption spectra and time-resolved fluorescence spectra. Two interesting examples, including photoinduced energy transfer and photoisomerization, are discussed.
We tried to combine deep leaning method and numerical accurate quantum dynamics approach to simulate the long-time quantum evolution of open quantum system. This approach allows us to obtain the evolution of reduced density matrix of open quantum system with a low computational cost. It demonstrates that the deep learning approach is the important tool to speed up the long-time quantum evolution. The similar time-series analysis tool can also be used to propagate all nuclear and electronic degrees of freedom in the trajectory evolution of the SQC-MM dynamics.
報(bào)告人簡(jiǎn)介:
Zhenggang Lan is a Professor at South China Normal University, Guangzhou, China. He received his BS in Chemical Physics from the University of Science and Technology of China in 2000 and his MS in Theoretical Chemistry from the Institute of Chemistry, Chinese Academy of Sciences (CAS), in 2003. He obtained his PhD in Theoretical Chemistry from the Technical University of Munich, Germany in 2007. Afterwards he worked as a postdoctoral researcher and the research Scientist at Technical University of Munich and the Max-Planck-Institut für Kohlenforschung. He then became a Full Professor at the Qingdao Institute of Bioenergy and Bioprocess Technology, CAS, before joining South China Normal University in 2018.
His current research interests focus on theoretical and computational chemistry, photophysics, photochemistry, nonadiabatic dynamics, molecular excited states, and quantum dynamics simulations. He has authored over 140 peer-reviewed publications in prestigious journals including Nature Communications, JACS, Angew. Chem. Int. Edit., J. Chem. Theory Comput., and so on. He has been an invited speaker at international conferences on more than 15 occasions.
8
報(bào)告人:張俊,中國(guó)科學(xué)院半導(dǎo)體研究所
時(shí)間:9月4日(周四)14:00
單位:清華大學(xué)物理系
地點(diǎn):物理樓W361
摘要:
自旋、電荷和晶格是固體材料中最為重要的自由度,它們之間的相互作用決定了材料的光電和輸運(yùn)性質(zhì)。本報(bào)告將介紹我們?cè)诎雽?dǎo)體自旋-電荷-晶格相互作用的光譜學(xué)探測(cè)和調(diào)控實(shí)驗(yàn)技術(shù)和最新研究進(jìn)展,包括:激子-聲子量子干涉和高階拉曼散射,聲子可分辨邊帶拉曼冷卻,二維半導(dǎo)體和異質(zhì)結(jié)單光子發(fā)射的DAP躍遷機(jī)制和缺陷態(tài)聲子耦合,二維反鐵磁半導(dǎo)體的自旋-激子-聲子耦合。
報(bào)告人簡(jiǎn)介:
張俊,中國(guó)科學(xué)院半導(dǎo)體研究所研究員,中國(guó)科學(xué)院大學(xué)崗位教授,博士生導(dǎo)師。2010年在中科院半導(dǎo)體所獲博士學(xué)位,之后在新加坡南洋理工大學(xué)數(shù)理學(xué)院做博士后研究,2015年回國(guó),2021年獲納米研究青年科學(xué)家獎(jiǎng)。主要從事低維半導(dǎo)體自旋-電荷-晶格-軌道相互作用光學(xué)探測(cè)和調(diào)控的前沿研究,在激光冷卻半導(dǎo)體、聲子邊帶拉曼冷卻、激子-聲子耦合、自旋-聲子相互作用等方面作出 重要貢獻(xiàn),在Nature、NaturePhotonics、Nature Communications等學(xué)術(shù)雜志上 發(fā)表論文130余篇,被引用1萬(wàn)余次,H因子49。
9
報(bào)告:Marvin Qi,University of Chicago
時(shí)間:9月5日(周五)9:00
單位:新加坡國(guó)立大學(xué)理學(xué)院物理系
地點(diǎn):
摘要:
The symmetry topological field theory (SymTFT) offers a unifying framework for describing quantum phases of matter and transitions between them. In this talk, we discuss a natural extension of the SymTFT framework to mixed-state phases by introducing the Symmetry Taco: a bilayer topological order in 2+1d whose folded geometry naturally captures both the strong and weak symmetries of the 1+1d mixed state phase. Using this perspective, we find natural correspondences between certain gapped, gapless, and mixed state SPTs in one dimension. We also identify a new "anomaly" unique to mixed states arising from gauging a weak symmetry.
10
報(bào)告人:張廣宇,中國(guó)科學(xué)院物理研究所
時(shí)間:9月6日(周六)20:00
單位:中國(guó)科學(xué)院學(xué)部工作局、教育部基礎(chǔ)教育司
鏈接:
摘要:
科幻小說(shuō)中恐怖的武器“二向箔”被眾多科幻愛(ài)好者津津樂(lè)道,但是如果我們真的對(duì)現(xiàn)實(shí)存在的材料“使用二向箔”,會(huì)發(fā)生什么呢?這些二維材料會(huì)展現(xiàn)出什么新奇的性質(zhì)?會(huì)帶來(lái)什么樣新的可能性?而為了得到這些新穎的材料,我們又需要使用什么樣的方法來(lái)制造它們?這些在實(shí)驗(yàn)室中誕生的奇特材料,又將為未來(lái)科技帶來(lái)些什么啟發(fā)?2025年9月6日(周六)晚8點(diǎn),讓我們進(jìn)入這個(gè)更低維度的世界,一起探秘神奇的二維材料!
封面圖片來(lái)源:https://www.quantumchina.com/newsinfo/6967338.html?templateId=520429
更多報(bào)告信息:
《物理》50年精選文章
特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺(tái)“網(wǎng)易號(hào)”用戶上傳并發(fā)布,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.